The Amount of Non-Fossil-Fuel CO₂ in the Atmosphere

T V Segalstad (Mineralogical-Geological Museum, University of Oslo, Sars' Gate 1, N-0562 Oslo, Norway)

Stable $^{13}\text{C}/^{12}\text{C}$ isotope ratios (expressed as $\delta^{13}\text{C}_{\text{PDB}})$ can be used to compute the composition of atmospheric CO₂. The natural atmospheric CO₂ reservoir has δ^{13} C \approx -7‰ when in isotopic equilibrium with marine HCO₃⁻ and CaCO₃. CO₂ from burning of fossil-fuel and biogenic materials has $\delta^{13}C \approx -26\%$. $\delta^{13}C$ reported for atmospheric CO₂ was -7.489‰ in Dec. 1978, decreasing to -7.807‰ in Dec. 1988 (Keeling et al. 1989; AGU Geophys. Mono. 55, 165-236). In ~300 years old Antarctic ice $\delta^{13}C = -6.31$ of trapped CO₂ (Friedli et al. 1986; Nature 324, 237-238). If the decreasing δ^{13} C was only caused by mixing natural CO₂ with CO₂ from burning of fossil fuels or plants (current ~79%/~21% CO₂ mix; lifetime 50-200 years; IPCC 1989), the current atmospheric CO₂ δ^{13} C should be much lower than reported. The December 1988 atmospheric CO₂ composition was computed for its 748 GT C (GT = 10^{15} g) total mass and δ^{13} C = -7.807‰ for 3 components: (1) natural fraction remaining from the pre-industrial atmosphere; (2) cumulative fraction remaining from all annual fossil-fuel CO_2 emissions; (3) carbon isotope mass-balanced natural fraction. The masses of component (1) and (2) were computed for different atmospheric lifetimes of CO₂. The result fits a lifetime of ~5 (5.4) years, in agreement with 14 C studies. The mass of all past fossil-fuel and biogenic emissions remaining in the current atmosphere was ~30 GT C or less, i.e. maximum ~4%, corresponding to an atmospheric concentration of ~ 14 ppmv. The implication of the ~ 5 year lifetime is that ~135 GT C (~18%) of the atmospheric CO₂ is exchanged each year. At least 96% of the current atmospheric CO₂ comes from non-fossil-fuel sources, i.e. natural marine and juvenile sources. Hence for the atmospheric CO₂ budget marine degassing and juvenile degassing from e.g. volcanic sources must be much more important, and burning of fossil-fuel and biogenic materials much less important, than hitherto assumed.

American Geophysical Union (AGU) Chapman Conference on Climate, Volcanism, and Global Change. March 23-27, 1992. Hilo, Hawaii. Abstracts, page 25.

Oral and poster presentation.

Present corresponding address: Tom V. Segalstad, Geological Museum, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, N-0318 OSLO, NORWAY.